十分钟的 pandas 入门教程(中文翻译)

原文是 pandas documentation 中的 10 Minutes to pandas

十分钟你妹啊!!

导入 pandas、numpy、matplotlib

1
2
3
4
5
In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

创造对象

Series 是一个值的序列,它只有一个列,以及索引。下面的例子中,就用默认的整数索引

1
2
3
4
5
6
7
8
9
10
11
In [4]: s = pd.Series([1,3,5,np.nan,6,8])

In [5]: s
Out[5]:
0 1
1 3
2 5
3 NaN
4 6
5 8
dtype: float64

DataFrame 是有多个列的数据表,每个列拥有一个 label,当然,DataFrame 也有索引

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
In [6]: dates = pd.date_range('20130101', periods=6)

In [7]: dates
Out[7]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')

In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

In [9]: df
Out[9]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

如果参数是一个 dict,每个 dict 的 value 会被转化成一个 Series

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
In [10]: df2 = pd.DataFrame({ 'A' : 1.,
....: 'B' : pd.Timestamp('20130102'),
....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
....: 'D' : np.array([3] * 4,dtype='int32'),
....: 'E' : pd.Categorical(["test","train","test","train"]),
....: 'F' : 'foo' })
....:

In [11]: df2
Out[11]:
A B C D E F
0 1 2013-01-02 1 3 test foo
1 1 2013-01-02 1 3 train foo
2 1 2013-01-02 1 3 test foo
3 1 2013-01-02 1 3 train foo

每列的格式用 dtypes 查看

1
2
3
4
5
6
7
8
9
In [12]: df2.dtypes
Out[12]:
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object

你可以认为,DataFrame 是由 Series 组成的

1
2
3
4
5
6
7
In [13]: df2.A
Out[13]:
0 1
1 1
2 1
3 1
Name: A, dtype: float64

查看数据

用 head 和 tail 查看顶端和底端的几列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
In [14]: df.head()
Out[14]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

In [15]: df.tail(3)
Out[15]:
A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

实际上,DataFrame 内部用 numpy 格式存储数据。你也可以单独查看 index 和 columns

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
In [16]: df.index
Out[16]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')

In [17]: df.columns
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

In [18]: df.values
Out[18]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
[ 1.2121, -0.1732, 0.1192, -1.0442],
[-0.8618, -2.1046, -0.4949, 1.0718],
[ 0.7216, -0.7068, -1.0396, 0.2719],
[-0.425 , 0.567 , 0.2762, -1.0874],
[-0.6737, 0.1136, -1.4784, 0.525 ]])

describe() 显示数据的概要。

1
2
3
4
5
6
7
8
9
10
11
In [19]: df.describe()
Out[19]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804

和 numpy 一样,可以方便的得到转置

1
2
3
4
5
6
7
In [20]: df.T
Out[20]:
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

对 axis 按照 index 排序(axis=1 是指第二个维度,即:列)

1
2
3
4
5
6
7
8
9
In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:
D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690

按值排序

1
2
3
4
5
6
7
8
9
In [22]: df.sort_values(by='B')
Out[22]:
A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

选择

注意,以下这些对交互式环境很友好,但是作为 production code 请用优化过的 .at, .iat, .loc, .iloc.ix

获取行/列

从 DataFrame 选择一个列,就得到了 Series

1
2
3
4
5
6
7
8
9
In [23]: df['A']
Out[23]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64

和 numpy 类似,这里也能用 []

1
2
3
4
5
6
7
8
9
10
11
12
13
In [24]: df[0:3]
Out[24]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

In [25]: df['20130102':'20130104']
Out[25]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

通过 label 选择

刚刚那个 DataFrame 可以通过时间戳的下标(dates[0] = Timestamp('20130101'))来访问

1
2
3
4
5
6
7
In [26]: df.loc[dates[0]]
Out[26]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

还可以多选

1
2
3
4
5
6
7
8
9
In [27]: df.loc[:,['A','B']]
Out[27]:
A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648

注意那个冒号,用法和 MATLAB 或 NumPy 是一样的!所以也可以这样

1
2
3
4
5
6
In [28]: df.loc['20130102':'20130104',['A','B']]
Out[28]:
A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771

依旧和 MATLAB 一样,当有一个维度是标量(而不是范围或序列)的时候,选择出的矩阵维度会减少

1
2
3
4
5
In [29]: df.loc['20130102',['A','B']]
Out[29]:
A 1.212112
B -0.173215
Name: 2013-01-02 00:00:00, dtype: float64

如果对所有的维度都写了标量,不就是选出一个元素吗?

1
2
In [30]: df.loc[dates[0],'A']
Out[30]: 0.46911229990718628

这种情况通常用 at ,速度更快

1
2
In [31]: df.at[dates[0],'A']
Out[31]: 0.46911229990718628

通过整数下标选择

和 MATLAB 完全一样

这个就和数组类似啦,直接看例子。选出第3行:

1
2
3
4
5
6
7
In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64

选出34行,01列:

1
2
3
4
5
In [33]: df.iloc[3:5,0:2]
Out[33]:
A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020

也能用 list 选择

1
2
3
4
5
6
In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]:
A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232

也能用 slice

1
2
3
4
5
In [35]: df.iloc[1:3,:]
Out[35]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
1
2
3
4
5
6
7
8
9
In [36]: df.iloc[:,1:3]
Out[36]:
B C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215 0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05 0.567020 0.276232
2013-01-06 0.113648 -1.478427

对应单个元素

1
2
In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858
1
2
In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858

布尔值下标

和 MATLAB 类似

基本用法

1
2
3
4
5
6
In [39]: df[df.A > 0]
Out[39]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

没有填充的值等于 NaN

1
2
3
4
5
6
7
8
9
In [40]: df[df > 0]
Out[40]:
A B C D
2013-01-01 0.469112 NaN NaN NaN
2013-01-02 1.212112 NaN 0.119209 NaN
2013-01-03 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860
2013-01-05 NaN 0.567020 0.276232 NaN
2013-01-06 NaN 0.113648 NaN 0.524988

isin() 函数:是否在集合中

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
In [41]: df2 = df.copy()

In [42]: df2['E'] = ['one', 'one','two','three','four','three']

In [43]: df2
Out[43]:
A B C D E
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three

In [44]: df2[df2['E'].isin(['two','four'])]
Out[44]:
A B C D E
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

Setting

为 DataFrame 增加新的列,按 index 对应

1
2
3
4
5
6
7
8
9
10
11
12
13
In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))

In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64

In [47]: df['F'] = s1

通过 label 设置

1
In [48]: df.at[dates[0],'A'] = 0

通过下标设置

1
In [49]: df.iat[0,1] = 0

用 numpy 数组设置

1
df.loc[:,'D'] = np.array([5] * len(df))

用布尔值作下标的 set

1
In [53]: df2[df2 > 0] = -df2

缺失值

pandas 用 np.nan 表示缺失值。通常它不会被计算。

Reindexing 允许你改变某个轴的 index(以下代码制造一个示例用的 DataFrame)

1
2
3
4
5
6
7
8
9
10
11
In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])

In [56]: df1.loc[dates[0]:dates[1],'E'] = 1

In [57]: df1
Out[57]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1
2013-01-02 1.212112 -0.173215 0.119209 5 1 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5 3 NaN

丢弃有 NaN 的行

1
2
3
4
In [58]: df1.dropna()
Out[58]:
A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5 1 1

填充缺失值

1
2
3
4
5
6
7
In [59]: df1.fillna(value=5)
Out[59]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 5 1
2013-01-02 1.212112 -0.173215 0.119209 5 1 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2 5
2013-01-04 0.721555 -0.706771 -1.039575 5 3 5

获取布尔值的 mask:哪些值是 NaN

1
2
3
4
5
6
7
In [60]: pd.isnull(df1)
Out[60]:
A B C D F E
2013-01-01 False False False False True False
2013-01-02 False False False False False False
2013-01-03 False False False False False True
2013-01-04 False False False False False True

操作

统计

通常,操作都会把 NaN 排除在外

平均值

1
2
3
4
5
6
7
8
In [61]: df.mean()
Out[61]:
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64

对另一个维度做平均值,只要加个参数

1
2
3
4
5
6
7
8
9
In [62]: df.mean(1)
Out[62]:
2013-01-01 0.872735
2013-01-02 1.431621
2013-01-03 0.707731
2013-01-04 1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64

Apply

对数据(行或列) Apply 函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
In [66]: df.apply(np.cumsum)
Out[66]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 -1.389850 10 1
2013-01-03 0.350263 -2.277784 -1.884779 15 3
2013-01-04 1.071818 -2.984555 -2.924354 20 6
2013-01-05 0.646846 -2.417535 -2.648122 25 10
2013-01-06 -0.026844 -2.303886 -4.126549 30 15

In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64

直方图

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
In [68]: s = pd.Series(np.random.randint(0, 7, size=10))

In [69]: s
Out[69]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype: int32

In [70]: s.value_counts()
Out[70]:
4 5
6 2
2 2
1 1
dtype: int64

字符串函数

Series 自带了很多字符串处理函数,在 str 属性中,下面是一个例子

1
2
3
4
5
6
7
8
9
10
11
12
13
14
In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [72]: s.str.lower()
Out[72]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object

Merge

Concat

简单地按行拼接

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df
Out[74]:
0 1 2 3
0 -0.582002 0.066403 0.917236 -0.214155
1 2.063923 1.930796 0.139574 0.449368
2 -1.348962 0.228120 0.323906 1.280778
3 0.689536 -0.083717 1.436075 0.663250
4 -1.895829 -0.726235 -0.770739 0.192482
5 0.302074 0.228735 1.390550 0.196159
6 0.672059 -1.576747 0.154820 1.218892
7 2.378061 0.280385 1.055607 -0.469225
8 -0.997102 -0.533977 0.311215 0.940570
9 -1.381892 -1.450002 0.562337 -1.195926

# break it into pieces
In [75]: pieces = [df[3:7], df[:3], df[7:]]

In [76]: pd.concat(pieces)
Out[76]:
0 1 2 3
3 0.689536 -0.083717 1.436075 0.663250
4 -1.895829 -0.726235 -0.770739 0.192482
5 0.302074 0.228735 1.390550 0.196159
6 0.672059 -1.576747 0.154820 1.218892
0 -0.582002 0.066403 0.917236 -0.214155
1 2.063923 1.930796 0.139574 0.449368
2 -1.348962 0.228120 0.323906 1.280778
7 2.378061 0.280385 1.055607 -0.469225
8 -0.997102 -0.533977 0.311215 0.940570
9 -1.381892 -1.450002 0.562337 -1.195926

Join

和 SQL 的 join 是一个意思

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [79]: left
Out[79]:
key lval
0 foo 1
1 foo 2

In [80]: right
Out[80]:
key rval
0 foo 4
1 foo 5

In [81]: pd.merge(left, right, on='key')
Out[81]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5

Append

向 DataFrame 增加新的数据行

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])

In [83]: df
Out[83]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758

In [84]: s = df.iloc[3]

In [85]: df.append(s, ignore_index=True)
Out[85]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 1.453749 1.208843 -0.080952 -0.264610

Grouping

和 SQL 中的 GROUP BY 类似,包括以下这几步:

  • 根据某些规则,把数据分组
  • 对每组应用一个聚集函数,把结果放在一个数据结构中

准备一下测试用的数据集

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
In [86]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
....: 'foo', 'bar', 'foo', 'foo'],
....: 'B' : ['one', 'one', 'two', 'three',
....: 'two', 'two', 'one', 'three'],
....: 'C' : np.random.randn(8),
....: 'D' : np.random.randn(8)})
....:

In [87]: df
Out[87]:
A B C D
0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three -0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two -0.392670 -0.136473
6 foo one 0.007207 -0.561757
7 foo three 1.928123 -1.623033

做 Group 操作并对每组求和

1
2
3
4
5
6
In [88]: df.groupby('A').sum()
Out[88]:
C D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958

可以对两列进行 Group by 并求和

1
2
3
4
5
6
7
8
9
10
In [89]: df.groupby(['A','B']).sum()
Out[89]:
C D
A B
bar one -1.814470 2.395985
three -0.595447 0.166599
two -0.392670 -0.136473
foo one -1.195665 -0.616981
three 1.928123 -1.623033
two 2.414034 1.600434

Reshape

Stack 层叠

准备一下数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
In [90]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
....: 'foo', 'foo', 'qux', 'qux'],
....: ['one', 'two', 'one', 'two',
....: 'one', 'two', 'one', 'two']]))
....:

In [91]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [93]: df2 = df[:4]

In [94]: df2
Out[94]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230

stack() 把 DataFrame 的列“压缩”到 index 里去

1
2
3
4
5
6
7
8
9
10
11
12
13
14
In [95]: stacked = df2.stack()

In [96]: stacked
Out[96]:
first second
bar one A 0.029399
B -0.542108
two A 0.282696
B -0.087302
baz one A -1.575170
B 1.771208
two A 0.816482
B 1.100230
dtype: float64

反之,只要是 MultiIndex 都可以用 unstack() 恢复出列,默认把最后一个 index 解开

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
In [97]: stacked.unstack()
Out[97]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230

In [98]: stacked.unstack(1)
Out[98]:
second one two
first
bar A 0.029399 0.282696
B -0.542108 -0.087302
baz A -1.575170 0.816482
B 1.771208 1.100230

In [99]: stacked.unstack(0)
Out[99]:
first bar baz
second
one A 0.029399 -1.575170
B -0.542108 1.771208
two A 0.282696 0.816482
B -0.087302 1.100230

Pivot Table 旋转

准备一下数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
In [100]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
.....: 'B' : ['A', 'B', 'C'] * 4,
.....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
.....: 'D' : np.random.randn(12),
.....: 'E' : np.random.randn(12)})
.....:

In [101]: df
Out[101]:
A B C D E
0 one A foo 1.418757 -0.179666
1 one B foo -1.879024 1.291836
2 two C foo 0.536826 -0.009614
3 three A bar 1.006160 0.392149
4 one B bar -0.029716 0.264599
5 one C bar -1.146178 -0.057409
6 two A foo 0.100900 -1.425638
7 three B foo -1.035018 1.024098
8 one C foo 0.314665 -0.106062
9 one A bar -0.773723 1.824375
10 two B bar -1.170653 0.595974
11 three C bar 0.648740 1.167115

pivot 是把原来的数据(values)作为新表的行(index)、列(columns)

1
2
3
4
5
6
7
8
9
10
11
12
13
In [102]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[102]:
C bar foo
A B
one A -0.773723 1.418757
B -0.029716 -1.879024
C -1.146178 0.314665
three A 1.006160 NaN
B NaN -1.035018
C 0.648740 NaN
two A NaN 0.100900
B -1.170653 NaN
C NaN 0.536826

时间序列

pandas 的时间序列功能在金融应用中很有用。

resample 功能:

1
2
3
4
5
6
7
8
9
In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S')

In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [105]: ts.resample('T', how='sum')
Out[105]:
2012-01-01 00:00:00 14833
2012-01-01 00:01:00 9246
Freq: T, dtype: int32

时区表示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')

In [107]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [108]: ts
Out[108]:
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64

In [109]: ts_utc = ts.tz_localize('UTC')

In [110]: ts_utc
Out[110]:
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64

时区的转换:

1
2
3
4
5
6
7
8
In [111]: ts_utc.tz_convert('US/Eastern')
Out[111]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64

从 Timestamp index 转换成 TimePeriod

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M')

In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [114]: ts
Out[114]:
2012-01-31 -1.134623
2012-02-29 -1.561819
2012-03-31 -0.260838
2012-04-30 0.281957
2012-05-31 1.523962
Freq: M, dtype: float64

In [115]: ps = ts.to_period()

In [116]: ps
Out[116]:
2012-01 -1.134623
2012-02 -1.561819
2012-03 -0.260838
2012-04 0.281957
2012-05 1.523962
Freq: M, dtype: float64

In [117]: ps.to_timestamp()
Out[117]:
2012-01-01 -1.134623
2012-02-01 -1.561819
2012-03-01 -0.260838
2012-04-01 0.281957
2012-05-01 1.523962
Freq: MS, dtype: float64

类别

1
In [122]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

把上述的文本类型的 raw_grade 转化成类别:

1
2
3
4
5
6
7
8
9
10
11
12
In [123]: df["grade"] = df["raw_grade"].astype("category")

In [124]: df["grade"]
Out[124]:
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

类别可以 inplace 地赋值:(只是改一下对应的字符串嘛,类别是用 Index 对象存储的)

1
In [125]: df["grade"].cat.categories = ["very good", "good", "very bad"]

修改类别时,如果有新的类别,会自动加进去

1
2
3
4
5
6
7
8
9
10
11
12
In [126]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

In [127]: df["grade"]
Out[127]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

group by 的时候,空的类别也会被呈现出来

1
2
3
4
5
6
7
8
9
In [129]: df.groupby("grade").size()
Out[129]:
grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype: int64

对于 DataFrame,可以直接 plot

1
2
3
4
5
6
7
8
In [133]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
.....: columns=['A', 'B', 'C', 'D'])
.....:

In [134]: df = df.cumsum()

In [135]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[135]: <matplotlib.legend.Legend at 0xab53b26c>

读取、写入数据

CSV

写入

1
In [136]: df.to_csv('foo.csv')

读取

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
In [137]: pd.read_csv('foo.csv')
Out[137]:
Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
.. ... ... ... ... ...
993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368

[1000 rows x 5 columns]

HDF5

1
2
3
In [138]: df.to_hdf('foo.h5','df')

In [139]: pd.read_hdf('foo.h5','df')

Excel

1
2
3
In [140]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

In [141]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])

1
2
3
4
5
>>> if pd.Series([False, True, False]):
print("I was true")
Traceback
...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

如上,不能直接把返回值当作布尔值。